Detecting Network Anomalies Using CUSUM and EM Clustering

نویسندگان

  • Wei Lu
  • Hengjian Tong
چکیده

Intrusion detection has been extensively studied in the last two decades. However, most existing intrusion detection techniques detect limited number of attack types and report a huge number of false alarms. The hybrid approach has been proposed recently to improve the performance of intrusion detection systems (IDSs). A big challenge for constructing such a multi-sensor based IDS is how to make accurate inferences that minimize the number of false alerts and maximize the detection accuracy, thus releasing the security operator from the burden of high volume of conflicting event reports. We address this issue and propose a hybrid framework to achieve an optimal performance for detecting network traffic anomalies. In particular, we apply SNORT as the signature based intrusion detector and the other two anomaly detection methods, namely non-parametric CUmulative SUM (CUSUM) and EM based clustering, as the anomaly detector. The experimental evaluation with the 1999 DARPA intrusion detection evaluation dataset shows that our approach successfully detects a large portion of the attacks missed by SNORT while also reducing the false alarm rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

A Nonparametric Adaptive Cusum Method And Its Application In Network Anomaly Detection

Detecting anomalies that disrupt the symmetry in two-way communications is an important task for network defense systems. The subtlety and complexity of anomalous traffic challenge the existing detection methods, and the bottleneck is how to set thresholds to adapt to the variability in network traffic. In this paper, a nonparametric adaptive CUSUM (Cumulative Sum) method is presented to meet t...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

Improving Lifetime of Strategic Information Network in Oil Supply Chain

Today, information networks play an important role in supply chain management. Therefore, in this article, clustering-based routing protocols, which are one of the most important ways to reduce energy consumption in wireless sensor networks, are used to optimize the supply chain informational cloud network. Accordingly, first, a clustering protocol is presented using self-organizing map neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009